69 | 0 | 8 |
下载次数 | 被引频次 | 阅读次数 |
在公路工程中,不同土质过渡区因地质条件突变导致的路基不均匀沉降问题日益突出,针对这一问题,以某跨岩质与沙土过渡区公路工程为背景,基于有限差分方法,建立分层填筑数值模型,分析岩石与沙土路基的沉降规律及应力集中效应。研究结果表明:岩石路段的路基沉降较小,最大沉降量为2 cm,而沙土路段的路基沉降较大,最大沉降量达到15 cm。在岩石和沙土过渡区域,由于土质性质的突变,出现了明显的应力集中现象,最大沉降梯度达1.2 cm/m,远超规范允许值。施工顺序和边端效应对上层路基的沉降和应力分布有显著影响。基于研究结果,提出了针对不同土质过渡区路基沉降问题的改进建议,包括设置梯度过渡层、优化填筑顺序和采用土工格栅加固等措施,可降低沉降差至规范允许范围内(<5 cm)。研究结论可为类似工程的设计与施工提供理论依据和技术支持,有效降低不同土质过渡区路基的沉降差异,确保路基的稳定性和行车安全。
Abstract:In highway construction projects, the uneven settlement of roadbed caused by the abrupt change of geological conditions in different soil transition zones has become increasingly prominent problem. To solve the problem, a highway construction project in the transition zone between rock and sandy soil was taken as the background, based on the finite difference method, a numerical model of layered filling was established, and the settlement rule and the stress concentration effect of rock and sandy soil foundation were analyzed. The research results show that the subgrade settlement of the rocky section is small, and the maximum settlement is 2 cm, the subgrade settlement of the sandy soil section is large, and the maximu m settlement reaches 15 cm. In the transition zone between rock and sandy soil, obvious stress concentration occurs due to the abrupt change of soil properties, and the maximum settlement gradient reaches 1.2 cm/m, which is far beyond the allowable value of the specification. The construction sequence and the side-end effect have a significant impact on the settlement and stress distribution of the upper subgrade. Based on the research results, the improvement suggestions for subgrade settlement in different soil transition zones are put forward, the measures including setting the gradient transition layer, optimizing filling sequence and adopting geogrid reinforcement, which can reduce the settlement difference to the allowable range of the specification(<5 cm). The research conclusion can provide theoretical basis and technical support for the design and construction of similar projects, effectively reducing the settlement difference of subgrade in different soil transition zone, and ensuring the stability of the subgrade and driving safety.
[1] 陈晓斌,熊家坤,李泰灃,等.高速铁路路桥过渡段可调高轨道结构性能研究[J/OL].铁道科学与工程学报,1-13[2025-03-24].https://doi.org/10.19713/j.cnki.43-1423/u.T20241261.
[2] 张克平,石广田,和振兴.路基不均匀沉降对地铁A型车辆动力学特性影响研究[J].振动与冲击,2020,39(17):165-170.
[3] 《中国公路学报》编辑部.中国路基工程学术研究综述·2021[J].中国公路学报,2021,34(3):1-49.
[4] 董立山,李文强,刘志胜.考虑黄土长期蠕变效应的路基沉降预测方法[J].公路,2022,67(8):1-7.
[5] 谢杰辉,牛富俊,彭智育,等.滨海高速公路软基变形规律及沉降预测应用[J].华南理工大学学报(自然科学版),2021,49(4):97-107.
[6] 李建贺,许然,高仝,等.浅埋暗挖隧洞下穿高速公路路基沉降控制[J].清华大学学报(自然科学版),2024,64(7):1252-1263.
[7] 邓博团,申超凡,郑谢缙,等.黄土地基不均匀沉降对现浇管廊影响的试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(2):212-219.
[8] 李哲,赵金朋,刘路路,等.陇东黄土路堤温/湿度场演化特征及不均匀沉降分析[J].应用基础与工程科学学报,2024,32(5):1333-1348.
[9] 余翠英,雷红博,罗文俊,等.基于DEM-MFBD方法的有砟轨道路基不均匀沉降影响分析[J].土木与环境工程学报(中英文),2023,45(4):10-18.
[10] 袁钰雯,杨县才,刘泽宇,等.路基不均匀沉降对高速车辆-道岔系统动力特性的影响[J].铁道建筑,2024,64(5):28-33.
[11] 肖源杰,周思嘉,畅振兴,等.路基不均匀沉降下列车-有砟轨道-路基三维耦合系统动力响应分析[J].中南大学学报(自然科学版),2023,54(12):4763-4776.
[12] ZHAO Z L,JING H W,SHI X S,et al.Study on bearing characteristic of rock mass with different structures:physical modeling[J].Geomechanics and engineering,2021,25(3):179-194.
[13] WU H Y,ZHAI K J,FANG H Y,et al.Bell-and-spigot joints mechanical properties study of PCCP under the uneven settlement of foundation:simulation and full-scale test[J].Structures,2022,43:1692-1703.
[14] LIAO X,CHEN Z L,DAI W Y,et al.Superstructure damages due to the joint effects of differential ground settlement and machinery vibration:a case study[J].Geomatics,natural hazards and risk,2024,15(1):168-173.
[15] 顾相涛,岳祖润,孙铁成,等.基于工程类比的盾构下穿高速铁路路基沉降预测及控制措施[J].铁道建筑,2024,64(7):12-16.
[16] 陈养强,郑明新,张永伟,等.列车荷载对隧道下穿路基沉降的影响[J].河南科技大学学报(自然科学版),2014,35(4):59-63.
[17] 李国芳,张向钰,高全福,等.路基不均匀沉降引起的轨道损伤变形及其对车轨动力响应的影响分析[J/OL].振动工程学报,1-12[2025-03-25].http://kns.cnki.net/kcms/detail/32.1349.TB.20240514.1238.004.html.
[18] AHMED NABIL R,JING P,ZHANG J X,et al.Numerical analysis of additional stresses in railway track elements due to subgrade settlement using FEM simulation[J].Applied sciences,2021,11(18):8501.
[19] 李林,孙砖芹,张浩,等.非均质软土加筋路基三维稳定性极限上限分析[J/OL].哈尔滨工业大学学报,1-18[2025-05-28].http://kns.cnki.net/kcms/detail/23.1235.T.20250121.1658.002.html.
[20] 中华人民共和国交通运输部.公路路基设计规范:JTG D30—2015[S].北京:人民交通出版社,2015.
基本信息:
DOI:10.15926/j.cnki.issn1672-6871.2025.04.008
中图分类号:U416.1
引用信息:
[1]海然,任文凤,崔力等.不同土质过渡区路基沉降数值模拟分析[J].河南科技大学学报(自然科学版),2025,46(04):65-72+121.DOI:10.15926/j.cnki.issn1672-6871.2025.04.008.
基金信息:
国家自然科学基金项目(52308246); 河南省重点研发专项(241111322000); 河南省科技攻关项目(252102320020)