65 | 0 | 18 |
下载次数 | 被引频次 | 阅读次数 |
针对典型船用复合材料结构的损伤监测问题,提出了一种复合材料损伤位置监测新方法,并构建了静力加载载荷和损伤扩展系数的关系。针对损伤位置监测,基于信号频谱和相关系数,提出了一种基于贝叶斯的损伤概率成像方法,并提出了多频率加权的损伤成像更新方法。针对损伤扩展研究,根据超声导波信号的时域信号特征和双曲正切函数构建了3种损伤扩展系数,获得了不同静力加载载荷下的损伤扩展系数。实验结果表明,基于贝叶斯的损伤概率成像方法可以实现损伤位置的精确定位;损伤扩展系数随载荷增加的变化规律,为典型复合材料结构的损伤扩展提供了技术支持。
Abstract:Aiming at the damage monitoring problem of typical marine composite material structures, a new method for monitoring the damage location of composite materials is proposed, and the relationship between static loading load and damage expansion coefficient is established. For damage location monitoring, based on signal spectrum and correlation coefficient, a Bayesian-based damage probability imaging method is proposed,and a multi frequency weighted damage imaging update method is proposed. For damage expansion research,three damage expansion coefficients are constructed according to the time-domain signal characteristics of ultrasonic guided waves and hyperbolic tangent function, and the damage expansion coefficients under different static loading loads are obtained. Experimental results show that the Bayesian-based damage probability imaging method can accurately locate the damage location; the variation law of damage expansion coefficient with increasing load provides technical support for the damage expansion of typical composite material structures.
[1]李功荣,谌伟,邱屿,等.夹芯复合材料板架强度试验及典型节点疲劳试验验证研究[J].中国舰船研究,2024,19(5):107-113.
[2]何子琛.船体结构监测故障诊断与损伤识别技术研究[D].大连:大连海事大学,2023.
[3]卿新林,刘琦牮,张雨强,等.飞行器复合材料全寿命结构健康监测技术[J].厦门大学学报(自然科学版),2021,60(3):614-629.
[4]许龙涛,辛士红,韩彦伟,等.信号对称性下的冲击损伤识别方法[J].厦门大学学报(自然科学版),2022,61(6):1103-1108.
[5]HAN F M,HAIDER M F,JOSEPH R,et al.Recent advances in piezoelectric wafer active sensors for structural health monitoring applications[J].Sensors,2019(2):383-383.
[6]SENO A H,ALIABADI M F.Uncertainty quantification for impact location and force estimation in composite structures[J].Structural health monitoring,2022(3):1061-1075.
[7]石玉文.基于压缩感知的煤岩体破裂声发射信号提取方法研究[D].阜新:辽宁工程技术大学,2020.
[8]卢海林,郭馨阳,郝静.基于多滤波降噪法的桥梁应变监测信号处理[J].噪声与振动控制,2024,44(4):180-187.
[9]郑跃滨.基于超声导波的薄壁结构无基准损伤诊断方法与集成化系统研究[D].大连:大连理工大学,2021.
[10]CHAMOIN L,FARAHBAKHSH S,PONCELET M.An educational review on distributed optic fiber sensing based on Rayleigh backscattering for damage tracking and structural health monitoring[J].Measurement science and technology,2022(12).
[11]范朝珠.基于Lamb波和贝叶斯框架的复合材料层合板分层损伤监测研究[D].太原:太原理工大学,2023.
[12]郑跃滨,武湛君,雷振坤,等.基于超声导波的航空航天结构损伤诊断成像技术研究进展[J].航空制造技术,2020,63(18):24-43.
[13]HUAN Q,CHEN M T,SU Z Q,et al.A high-resolution structural health monitoring system based on SH wave piezoelectric transducers phased array[J].Ultrasonics,2019:29-37.
[14]任元强.基于压电阵列的复合材料结构冲击轻量化监测研究[D].南京:南京航空航天大学,2018.
[15]HE J Z,ROCHA D C,LESER P E,et al.Least-squares reverse time migration(LSRTM)for damage imaging using Lamb waves[J].Smart materials and structures,2019(6).
[16]KANNUSAMY M,KAPURIA S,SASMAL S.An efficient Lamb wave-based virtual refined time-reversal method for damage localization in plates using broadband measurements.[J].Ultrasonics,2022:106767-106767.
[17]YANG B,XIANG Y X,XUAN F Z,et al.Damage localization in hydrogen storage vessel by guided waves based on a realtime monitoring system[J].International Journal of hydrogen energy,2019(40):22740-22751.
[18]陈健,袁慎芳.加筋复合材料结构分层损伤的贝叶斯诊断及预测[J].复合材料学报,2021,38(11):3726-3736.
[19]CHANG M,YUAN S F,GUO F Y.Corrosion monitoring using a new compressed sensing-based tomographic method[J].Ultrasonics,2020:105988.
[20]陈晓,华天昊.优化形状因子的超声兰姆波损伤概率成像[J].声学与电子工程,2024(3):48-53.
[21]刘科海.飞行器关键构件的超声导波损伤诊断成像方法研究[D].大连:大连理工大学,2016.
[22]YANG H J,YANG L,YANG Z Y,et al.Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials:A review[J].Composite Structures,2023.
[23]康永乐,邱雷.导波结构健康监测中损伤因子的研究和应用[J].国外电子测量技术,2021,40(6):113-119.
[24]王霞光,刘国强,王莉,等.基于压电导波的复合材料帽型加筋壁板损伤监测[J].无损检测,2025,47(1):27-32.
[25]朱妍妍.多模式兰姆波传播特性的数值和实验研究[D].南京:南京信息工程大学,2022.
基本信息:
DOI:10.15926/j.cnki.issn1672-6871.2025.04.004
中图分类号:U661.4;TB33
引用信息:
[1]许龙涛,张尧,周志伟等.复合材料损伤位置监测新方法及损伤扩展研究[J].河南科技大学学报(自然科学版),2025,46(04):24-33+87+119.DOI:10.15926/j.cnki.issn1672-6871.2025.04.004.
基金信息:
国家自然科学基金项目(12402070); 河南科技大学博士科研基金项目(13480029)