nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.46 8-16+117-118
燃料电池用空压机驱动电机电磁热分析与冷却系统优化
基金项目(Foundation): 国家自然科学基金项目(52006054); 河南省重点研发专项(231111242000)
邮箱(Email):
DOI: 10.15926/j.cnki.issn1672-6871.2025.04.002
摘要:

针对燃料电池用空压机电机机壳水冷流道进行设计与分析。首先,使用Motor-CAD软件进行电磁仿真,确定热源及其发热功率。依据发热功率确定冷却液流量,计算了气隙和电机主要接触面的对流换热系数。使用ANSYS-Fluent软件建立了螺旋流道水冷电机的流固耦合模型,使用PT100热电阻温度传感器测得电机内部温度,对端部绕组处的温度进行了验证。对原设计流道在正常温度工况(冷却液温度75℃左右)和高温极限工况(冷却液温度85℃左右)下进行电机温升评估,发现在正常温度工况下,原设计流道可以保证电机正常工作要求,但在高温极限工况下,原流道设计会使得电机右侧端部绕组存在局部过热,超出H级绝缘电机温升限值125.00 K。提出了流道优化方案,通过减缓流道截面积增大的速度,减缓流体流速的下降速率。与原设计流道相比,优化后的流道使得局部过热部位的冷却流体流速增大,这增强了冷却液与电机的换热效果。仿真结果表明:在高温极限工况,优化后流道的截面变化率更小,流速下降平缓,优化后流道内壁面温度由356.50 K下降至354.85 K,端部绕组的局部热点最高温度由433.09 K降至422.92 K。与原设计方案相比,优化后的端部绕组局部热点温度降低了10.17 K,温升为124.92 K,低于温升限值125.00 K,流道冷却效果明显优化。

Abstract:

The water-cooled flow channel in the casing of air compressor motor for fuel cell was designed and analyzed in this paper. Firstly, motor-CAD was used for electromagnetic simulation to determine the heat sources and heating power. Based on the heating power, the coolant flow rate was determined, and the convective heat transfer coefficients of the air gap and the main contact areas of the motor were calculated. A fluid-solid coupling model of the spiral-flow-channel water-cooled motor was established in ANSYS-Fluent software. The temperature at the end-region winding was validated by measuring the internal temperature of the motor using a PT100 platinum resistance temperature detector. The temperature rises of the motor was evaluated for the original flow channel under normal temperature conditions(coolant temperature≈75 ℃) and high-temperature limit conditions(coolant temperature≈85 ℃). The results show that the original design could meet the normal motor operation under normal temperature conditions. Under high-temperature limit conditions, the original design caused local overheating in the motor's right end-region winding, exceeding the H-level insulation temperature rise limit of 125.00 K. An optimized flow channel design was proposed to reduce the rate of cross-sectional area increase, thereby slowing the decrease in fluid velocity. Compared with the original design, the optimized channel increased the flow velocity at the overheating region, enhancing the coolant-motor heat transfer. The simulations results indicate that under high-temperature limit conditions, the optimized channel had a smaller cross-section change rate and a slower velocity reduction. The inner wall temperature decreased from 356.50 K to 354.85 K, and the maximum end-winding hot spot temperature decreased from 433.09 K to 422.92 K. Compared with the original design, the optimized end-region winding exhibits a reduction of 10.17 K in the local hot spot temperature. Furthermore, the temperature rise is 124.92 K, which is below the specified limit of 125.00 K. This demonstrates a significant improvement in the cooling performance of the flow channel.

参考文献

[1] WU Y,BAO H,FU J,et al.Review of recent developments in fuel cell centrifugal air compressor:comprehensive performance and testing techniques[J].International journal of hydrogen energy,2023,48(82):32039-32055.

[2] SUN Y,ZHANG S,CHEN G,et al.Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors [J].Applied thermal engineering,2020,170:114970.

[3] JIA J.Analysis of temperature rise in high-speed permanent magnet synchronous traction motors by coupling the equivalent thermal circuit method and computational fluid dynamics[J].Fluid dynamics & materials processing,16(5),2020:919-933.

[4] ZHU G,LIU X,LI L,et al.Cooling system design of a high-speed PMSM based on a coupled fluidic-thermal model[J].IEEE transactions on applied superconductivity,2019,29(2):1-5.

[5] PETROV I,LINDH P,NIEMEL? M,et al.Investigation of a direct liquid cooling system in a permanent magnet synchronous machine[J].IEEE Transactions on energy conversion,2019,35(2):808-817.

[6] ZHANG H,YU W,HUA W.Design and key technology of oil-free centrifugal air compressor for hydrogen fuel cell[J].CES Transactions on electrical machines and systems,2022,6(1):11-19.

[7] 陈丽香,刘栋,张超,等.基于多物理场的超高速永磁电机冷却系统设计及分析[J].电机与控制学报,2023,27(3):113-123.

[8] BAOJUN G,JIONG Z,TAO D.Temperature prediction and cooling structure optimization of explosion-proof high pressure water-cooled double speed motor[J].Energy reports,2022,8:3891-3901.

[9] 王晓远,杜静娟.应用CFD流固耦合热分析车用高功率密度电机的水冷系统[J].电工技术学报,2015,30(9):30-38.

[10] 王晓远,杜静娟.CFD分析车用电机螺旋水路的散热特性[J].电工技术学报,2018,33(4):955-963.

[11] 万珍平,温万昱,吴柏禧,等.考虑换热能力和压降的永磁同步电机冷却流道设计[J].华南理工大学学报(自然科学版),2017,45(7):25-32,40.

[12] 龚骋原.全功率燃料电池汽车散热关键部件优化设计[D].武汉:华中科技大学,2021.

[13] 陈曦,贺凌轩,刘芹孝,等.动态工况下车用燃料电池系统热力学分析[J].储能科学与技术,2021,10(4):1416-1422.

[14] 李菁,汪怡平,陶琦,等.全功率燃料电池汽车散热系统设计、建模与分析[J].汽车工程学报,2019,9(6):462-467.

[15] KOVACIK M,RAFAJDUS P,STANO M.Analysis of loss and thermal performance of high speed PMSM for automotive application [C]//2022 ELEKTRO exhibition and conference,IEEE,2022:1-4.

[16] GUNDABATTINI E,MYSTKOWSKI A.Review of air-cooling strategies,combinations and thermal analysis (experimental and analytical) of a permanent magnet synchronous motor[J].Proceedings of the institution of mechanical engineers part C-journal of mechanical engineering science,2022,236(1):655-668.

[17] 许欣.高速永磁电机定子绕组交流损耗研究与温度场分析[D].南京:南京航空航天大学,2021.

[18] 蔡昀彤,赵后剑,李晓伟,等.SST k-ω-γ模型修正及其对螺旋管内层流向湍流转捩过程的预测[J].核动力工程,2024,45(6):55-62.

[19] WU B,WAN Z,ZHANG K,et al.Design of reentrant cooling channel in permanent magnet synchronous motor considering temperature field and flow field[J].Transactions of China electrotechnical society,2019,34(11):2306-2314.

[20] 郑文杰,杨径,朱林培,等.车用燃料电池热管理性能仿真与试验研究[J].汽车工程,2021,43(3):381-386.

[21] 周拓.燃料电池用电动空压机散热分析与优化[D].济南:山东大学,2021.

[22] 邓名威.氢燃料电池用超高速离心空压机系统设计及实验研究[D].长沙:湖南大学,2021.

基本信息:

DOI:10.15926/j.cnki.issn1672-6871.2025.04.002

中图分类号:U469.7;TM911.4;TM341

引用信息:

[1]李民,李阳阳,范晨阳等.燃料电池用空压机驱动电机电磁热分析与冷却系统优化[J].河南科技大学学报(自然科学版),2025,46(04):8-16+117-118.DOI:10.15926/j.cnki.issn1672-6871.2025.04.002.

基金信息:

国家自然科学基金项目(52006054); 河南省重点研发专项(231111242000)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文